Search results for "Uncinate fasciculus"
showing 5 items of 5 documents
Physical Activity Predicts Population-Level Age-Related Differences in Frontal White Matter
2018
Physical activity has positive effects on brain health and cognitive function throughout the life span. Thus far, few studies have examined the effects of physical activity on white matter microstructure and psychomotor speed within the same, population-based sample (critical if conclusions are to extend to the wider population). Here, using diffusion tensor imaging and a simple reaction time task within a relatively large population-derived sample (N = 399; 18–87 years) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN), we demonstrate that physical activity mediates the effect of age on white matter integrity, measured with fractional anisotropy. Higher self-reported daily ph…
Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder
2016
Background: Abnormal maturation of brain connectivity is supposed to underlie the dysfunctional emotion regulation in patients with bipolar disorder (BD). To test this hypothesis, white matter integrity is usually investigated using measures of water diffusivity provided by MRI. Here we consider a more intuitive aspect of the morphometry of the white matter tracts: the shape of the fibre bundles, which is associated with neurodevelopment. We analyzed the shape of 3 tracts involved in BD: the cingulum (CG), uncinate fasciculus (UF) and arcuate fasciculus (AF). Methods: We analyzed diffusion MRI data in patients with BD and healthy controls. The fibre bundles were reconstructed using Q-ball–b…
Impaired anatomical connectivity and related executive functions: differentiating vulnerability and disease marker in bipolar disorder.
2012
Background Bipolar 1 disorder (BD1) has been associated with impaired set shifting, increased risk taking, and impaired integrity of frontolimbic white matter. However, it remains unknown to what extent these findings are related to each other and whether these abnormalities represent risk factors or consequences of the illness. Methods We addressed the first question by comparing 19 patients with BD1 and 19 healthy control subjects (sample 1) with diffusion tensor imaging, the Intra-Extra Dimensional Set Shift Task, and the Cambridge Gambling Task. The second question we approached by applying the same protocol to 22 healthy first-degree relatives of patients with BD1 and 22 persons withou…
Sterol Regulatory Element Binding Transcription Factor-1 Gene Variation and Medication Load Influence White Matter Structure in Schizophrenia
2014
<b><i>Background:</i></b> Diffusion tensor imaging (DTI) studies have shown a widespread disruption of white matter (WM) microstructure in schizophrenia. Furthermore, higher fractional anisotropy (FA) has been consistently correlated with the severity of psychotic symptoms. Antipsychotic drugs (APDs) affect lipid homeostasis. Gene polymorphisms in sterol regulatory element binding transcription factor (SREBF)-1 and SREBF-2 have been associated with schizophrenia. <b><i>Methods:</i></b> In a sample of 65 patients affected by chronic schizophrenia, we investigated the effect of ongoing APD medication, SREBF-1 rs11868035<b> </b>polymo…
Physical activity predicts population-level age-related differences in frontal white matter
2018
AbstractPhysical activity has positive effects on brain health and cognitive function throughout the lifespan. Thus far, few studies have examined the effects of physical activity on white matter (WM) microstructure and psychomotor speed within the same, population-based sample (critical if conclusions are to extend to the wider population). Here, using diffusion tensor imaging and a simple reaction time task within a relatively large population-derived sample (N = 399; 18–87 years) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN), we demonstrate that physical activity mediates the effect of age on white matter integrity, measured with fractional anisotropy. Higher self-repor…